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Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence
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Decaying homogeneous isotropic turbulence in inertial and rotating reference frames is investigated to
evaluate the capability of the lattice Boltzmann method in turbulence. In the inertial frame case, the decay
exponents of kinetic energy and dissipation and the low wave-number scaling of the spectrum are studied. The
results are in agreement with classical ones. In the frame-rotation case, simulations show that the energy decay
rate decreases with decreasing Rossby number as the energy cascade is inhibited by rotation, again in agree-
ment with turbulence physics. These results clearly indicate that the lattice Boltzmann method captures im-
portant features of decaying turbulence.
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The lattice Boltzmann equatio(LBE) [1-6] is rapidly  lence. The first attempt at DNS of NS equation in fact in-
becoming a viable alternative for computing fluid flows. Thevolved DHIT [13]. Recent investigations include studies on
lattice Boltzmann methoLBM) is based on the Boltzmann decay exponents and low wave-number spectra using NS-
equation and kinetic theory rather than the Navier-Stoke®NS [14-16. Some preliminary three-dimensionéBD)
(NS) equations and continuum theofy]. The Boltzmann DHIT studies using LBE have also been perfornigéd—19
equation constitutes the core of mesoscopic theory whiclhut they stop well short of quantitative comparisons with
relates the macroscopic equations for flow systems to thelassical results. The objective of this work is to compute
underlying microscopic molecular dynamics. The methodDHIT with LBE and perform detailed comparisons with es-
based on the Boltzmann equation, such as the LBE methogablished results on the following important issugsenergy
are more general than the ones based on the NS equatiofgcay exponentji) low wave-number scaling of the spectra,
because kinetic methods may be applied to extended hydremnd (iii ) effect of rotation on energy decay.
dynamics for which continuum theory is invalid. In addition 114 energy spectruﬁi(x,t) in DHIT evolves as
to theoretical generality, kinetic methods may have compu-
tational and numerical advantages because the Boltzmann &tE(K,t)z—:i—(K,t)—2VKZE(K,t), (1)
equation is a first-order linear partial different equation
(PDE) as opposed to the NS equation, a second order norwhere « is the wave number anda is the viscosity, and
linear PDE. It has been argued that discretization of firSt:i'(K,t) represents the nonlinear energy transfer between
order linear PDEs has the following advantag8$ First,  modeqcf. Eq.(6.162 in Ref.[20]]. The kinetic energk and
first-order linear PDEs require only the smallest possiblejissipatione of turbulence are given, respectively, by
stencil for accurate discretization, may be easier to achieve
convergence, and yield the highest potential discretization k:J E(K)dx and e=21/f KZE(K)dK
accuracy on nonsmooth, adaptively refined grids. Second, ’
stiff terms in first-order PDEs are local in nature thus can be L .
handled by local solution techniques, as opposed to globdl Nas been long observed that, after a short initial transient
ones. And third, systems of first-order PDEs are better suiteB€"0d Of time, the kinetic energyand dissipatiore exhibit
for functional decomposition than the traditional higher- POWer-law decay,

order nonlinear PDERS]. Consequently, LBM has found ap- k(D)Ko ~ ()™, e(t)eq~ (t/tg) ™Y 2)
plications in many areas of flow physi¢sf. reviews[9-12] ’ ’
and references thergin wherek and e have the valueg, and €, respectively, at the

In this paper, we focus on the application of LBE to tur- reference timetg=nky/ €y. Isotropic turbulence is character-
bulence. As a first step to evaluate the capability of LBE inized by the Taylor-microscale Reynolds number,
turbulence, we conduct direct numerical simulatidBHNS)
of decaying homogeneous isotropic turbuled®HIT) in Ra\:m: ﬂk 3)
both inertial and rotating frames of reference. DHIT is an v 3ve

important benchmark problem in the field of DNS of turbu- == .
P P whereu,,,s=2k/3 is the root mean squafems) of the ve-

locity field u and A=1150u2 /€ is the transverse Taylor-

rms
* . ) microscale length.
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time-independent constarfé.g. Ref.[21]). For inviscid flu- e, a
ids, if Loitsyansky’s integra[22] is an invariant, therr=4 Fo=- 3\Nap075t1 5
andn=10/7[23]; if Birkhoff’s integral [24] is an invariant,
theno=2 andn=6/5[25]. It has been recently shown that wherea is the acceleration due to external force. Here, we
constant integral length scaleor the Reynolds number Re consider the Coriolis force, i.ea=—2Q X u, where€Q is the
correspond tar=« andn=2 or o=1 andn=1, respectively angular velocity of the frame of reference.
[26]. Furthermore, the conservations of energy, angular mo- The hydrodynamic equations derived from E¢§)
mentum, and helicity lead te=2, 7, and 1, in the limit of through the Chapman-Enskog analysis are
Re— oo, respectively. The energy conservation of inviscid _
fluids uniquely determines the invariant solution of Et), dp+ V- pu=0, (63)
i.e., =2, in accordance with Birkhoff’s invarianf4]. De- 5
spite the apparent simplicity of the DHIT problem, the rel- gu+u-Vu=-Vp+rVu+a, (6b)
evant flovy invariant, asymptptic decay.e_x.ponent, and th‘i'/vherep:cgp/ po and the viscositw:c§(7—1 /2).
low-« scaling are strong func_:tlon_s of the initial spectrum and e strain tenso® can be obtained directly from the non-
Reynolds number. There is still no clear CONSensus ORqjilibrium part of the distribution functions
whether the angular momentum or energy is the correct in-
variant. It is also not clear what the conditions are under _ 1
which the invariance of either quantity can be observed. As a S=
result, several different outcomes have been reported in the
literature[14,15,27,28 and e=21(S:S), where() denotes volume averaging.

The lattice Boltzmann equation with single-relaxation-  The initial incompressible homogeneous isotropic veloc-
time approximation due to Bhatnagar, Gross, and Krookty field uy (V-uy=0) is generated inc space with the fol-
(BGK) [29] for the collision operator i§2,3] lowing energy spectrum with random phase:

E(K,O) = {0'038"me_0'14<2: K € [ Kpmin) Kmax]
) K & [ Kmins Kmax] -

wheref,, is the density distribution function with the discrete Wehusg Q?ﬁ:arent values afiin Eﬂ' (8) to r:eStftme effectldue
velocity e, ff“) is the equilibrium distribution function, and to the initial spectrum. We use=4 in what follows unless

7 is the relaxation time determining the viscosityof the ~ Ctherwise stated. _ o
modeled fluid. We use the 3D 19-velocity modBBQ19 in A successful LBE turbulence simulation hinges upon pre-

our simulations because of its robust numerical characterisc-is’e stipulati(_)n of if"“a' conditions. For Navier—Stgkes b_a;t_ad
tics [30]. The equilibria for incompressible floy81] are turbul_enqe simulations, one only 'f‘eeds to specn‘y an !n|t|al
velocity field. For decaying isotropic turbulence simulations,

3e,-u 9e, u? 3 a random, isotropic, and divergence-free velocity figjcbf
V=W, dp+po| — 5+~ | [

- 2 2 eaea[fa_ fE)zeaJ]a (7)
2pOCsT a

Fo(X +€,8,t+ &) = Fo(x,t) - %[fa— feI+F,, (4 (8)

2 oc? 22 a required spectruri(«, 0) in spectral space is generated,
following the, now standard, procedure described in Refs.
where 8p is the density fluctuation, angh is the mean den- [33,34. The initial pressure is then obtained by solving the
sity in the system which is usually set to 1, amds,/5,=1  Poisson equation. However, the initialization in the LBE
in lattice units. The sound speed of the modetisc/\3.  Simulations has to be done differently because, first of all,
The total density ip=py+ Sp. The discrete particle velocities Unlike incompressible Navier-Stokes simulations, the LBE

e, are method is inherently compressible. Moreover, all the distri-
bution functions{f,}, not just their conserved momenigor
(0,0, a=0 p) and pu, must be initialized in a self-consistent manner.
_ a1 This can be best understood in terms of the generalized or
€=)*1,0.0,(0,£1,0,(0,0. £, @=1-6 multiple-relaxation-timeMRT) LBE [4-6]. Given an LBE
(#1,+1,0,(£1,0,£1,(x1,£1,0, a=7-18, model with Q discrete velocities inD dimensions, theQ

o N distribution functions{f,} are equivalent toQ moments
and the weighting coefficients arevg=1/3, w1_6;1/18, {m,}. The velocity and pressure fields only specify+1)
wy_1g=1/36. The mass and momentum conservations are elonserved moments ¢f .}, and usuallyD+1)<Q. To ob-
forced: tain accurate results for HIT simulations by using LBE, it is

~ _ €9 imperative to properly initialize all of théf,}, or equiva-
Sp=21,= 2 159, lently the momentgm,}. Clearly it is difficult, if at all pos-
“ “ sible, to accurately and consistently estimate the noncon-
served moments, which are related to the derivatives of the
poU = > e, f,= > e,fe9. conserved momentg andu, for a givenu,. Thus an effec-
o o tive initialization procedure is need¢@5).
We now describe the iterative procedure proposed in Ref.
For isothermal fluids, the forcing teri, is [32] [35] within the context of the lattice BGKLBGK) equation.
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FIG. 1. Time evolution of the normalized kinetic enerigik,
64° cube(X): Ume=0.022,v=1/600, and kmin, Kmaxl =[4, 8]

(solid lineg and normalized dissipation ra& e, (dashed linesfor
642 (thin lines and 128 (thick lines cube.
Figure 1 shows the evolutions of the kinetic enekdi

First, we generate a random, isotropic, and divergence-fre@nd the dissipatiom/ €, with the normalized time’ =tey/ko.
velocity fieldu, of the required spectruti(s, 0) in the spec- in t_he abs_ence_ of production, kinetic energy decays mono-
tral spacex using the procedure outlined in R€33,34. The t_omcally Wlth time. However, as shown_ n Fig. 1, at early_
initial velocity is then transferred back to the réal .s ace times dissipation actually increases. This increase is consis-
Y . ) pa tent with known turbulence physidexplained further be-

Then the LBGK equationi4) without external forceF, is P : :

. . R i low) and similar increase is also seen in NS-DNS results.
used iteratively to compute the distribution functioffy} Following this period of increased dissipation, the spectrum
(and 8p) with the velocity fieldu fixed at the initial velocity g b P ’ P

) o o -7 . starts decaying at all wave numbers. The decay expament
g?édgui\%tr:]%ty's' in the LBGK collision process, the equilibria of the kinetic energy in these low Rg simulations varies

with time. Furthermore, Retself is a function of time as the
£€9 = £ 5p up), turbulence decays. In Fig. 2, the variation mfvs Rg in

various simulations are shown. The computed values of
wheredp is updated at each time step while the velocity fieldand the dependence on,Rare very similar to that observed
is fixed at the given initial fieldi,. This iteration with a fixed in NS-DNS works(e.g. Ref[14]). Table | compiles the val-
initial velocity field ug leads to the values df,} consistent ues for the decay exponentof kinetic energy obtained in
with ug. It can be shown that the pressyseso obtained is recent experimental woilR7,28, NS-DNS datd14,15, and
indeed the correct solution of the Poisson equalt&8;. the present LBE-DNS results. The LBE-DNS valuesnof

We observe that, without proper initialization {f,}, the  computed here are well within the range obtained else where,

initial equilibration process can generate strong acoustias shown in Table I.

(press'urbe waves through the system which can persist for  The compensated energy spec&@;,t’)lx“, of the 128

long time. Two severe consequences may result from thejmyjation are shown in Fig. 3. Initially, the spectrum with
unphysical initial acoustic disturbances. First, the acousti¢,=4 in Eq.(8) (dashed lingis narrow and soon the energy
disturbances may lead to numerical instability and this isspreads to higher wave numbdmsnaller scalesdue to the
particularly severe in the LBGK models, because the LBGKponlinear cascade process. This phenomenon leads to the
models do not have an adequate amount of the bulk V'Scos'ti}ﬁcrease of the dissipation rate in physical space, as shown in

to dissipate the acoustic disturbances. The second undesityy 1. This fact, in itself, is quite significant since advection
able consequence of inconsistent initialization is that initial

acoustic disturbances can significantly contaminate the solu- tag| g |. Recent results for the exponent The LBE-DNS
tion at later times. For instance, the total energy can be a few,qits correspond to Fig. 2 in the present work.

percent less than its correct value if the initialization is in-
correct. The proposed initialization procedd&s] signifi-

cantly reduces the magnitude of initial acoustic disturbances, “in E(<.0) Re\ exponentn Ref.

and it has also been successfully applied to LBE-LES simu-=

lations[37]. o E() ~ 12 0-30 11-152  NS-DN§L4]
We first simulate DHIT in the inertial frame. We use two

system sizes: 64and 128. The initial energy spectrum is  E(x)~ & 10-50 1.0-3.0 NS-DN$LS]

nonzero in the rangex<min, kmax] =[4, 8] and[1,8], according 28.37-43.85  1.285-1.309 exp7]

to Eq. (8), for 64° and 128, respectively; andi,,=0.023 4.4-5.4 1.3-1.8 expf28]

and »=1/600(7=0.509, resulting in Rg~53 for 64 and E(k) ~ x4 2.3-22.5 1.38-1.85 LBE-DNS

270 for 128.
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FIG. 4. Kinetic energy decay with the system size of 328

0.044, 0.066, and 0.088. The dashed line represents the initial spe nd different Rossby number Ro. The dashed line is the inertial case

trum of Eq.(8). The spectrum spreads to highemonotonically as
t’ increases. The spectrum scalesEés,t’) ~ «* at small.

(the source of nonlinearityis handled very differently in
LBE. At this stage, the spectrum scales I%(S(,t’)~;<4 at
small . This dependence of low wave-number scaliaf)
on initial spectrum(m=4) is in agreement with the other

results[14,15. Subsequently, the spectrum starts to deca

more rapidly at the large and slowly at the smalk. Inves-

tigations of low wave-number scaling for other initial spectra

will be performed elsewher87].

We also simulate DHIT in a rotating frame. Without loss
of generality, we assume that the frame of reference rotat
about thez axis, i.e., the angular velocity of the rotating

frame of reference i€2=(0,0,(2). The Rossby number is

defined as RoryUms/ (2, Wherex, characterizes the energy

containing wave number at=0. Here, we use<,=(kmax
— Kmin)/ 2.

Q=0 or Ro=x).

down with decreasing Rossby numker increasing rate of
rotation. Closer examination of the spectra shows the ten-
dency to maintain more energy at the small wave numbers
(large scaleswhen the system rotates. The faster the system
rotates(smaller Rossby numbgrthe more prominent is this
tendency.

' In this paper, we simulate the classical DHIT problem
with LBM and reproduce well known power-law decay of
the kinetic energy. The decay exponents obtained in the LBE
simulations are in good agreement with experimental mea-
surements and NS-DNS results. Correct low wave-number

esspectral scaling is also obtained. The effect of rotation on

turbulence is to suppress the spectral cascade and thus slow
down the decay.

We observe that, even though the LBE method is only
second-order accurate in space and first-order in time
[39-42, it compares very well with the pseudospectral

~ The effects of rotation are both scale dependent and annethod down to the scales of several grid spacings, for a
isotropic and they are enhanced by increasing the rotatiopaasonably long timd19]. This work further establishes

rate(). In general, it has long been knoy®8] that rotation  the | BE method as a highly reliable DNS tool to simulate
slows down the cascade and delays the approach to equj;rpulence.

partition. These features are captured in Fig. 4 which shows

the evolution of kinetic energy at various Rossby numbers H.Y. would like to thank Dr. L.-P. Wang, Dr. R. Mei, and
in an 128 simulation. The initial energy spectrum is nonzero Dr. D. Yu for helpful discussions. This work was supported
in the range of & «<8. Time is normalized by,/¢e, of by the United States Air Force Office for Scientific Research
the inertial case. As expected, the energy decay slowsnder Grant No. F49620-01-1-0142.
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