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Decaying homogeneous isotropic turbulence in inertial and rotating reference frames is investigated to
evaluate the capability of the lattice Boltzmann method in turbulence. In the inertial frame case, the decay
exponents of kinetic energy and dissipation and the low wave-number scaling of the spectrum are studied. The
results are in agreement with classical ones. In the frame-rotation case, simulations show that the energy decay
rate decreases with decreasing Rossby number as the energy cascade is inhibited by rotation, again in agree-
ment with turbulence physics. These results clearly indicate that the lattice Boltzmann method captures im-
portant features of decaying turbulence.
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The lattice Boltzmann equationsLBEd f1–6g is rapidly
becoming a viable alternative for computing fluid flows. The
lattice Boltzmann methodsLBM d is based on the Boltzmann
equation and kinetic theory rather than the Navier-Stokes
sNSd equations and continuum theoryf7g. The Boltzmann
equation constitutes the core of mesoscopic theory which
relates the macroscopic equations for flow systems to the
underlying microscopic molecular dynamics. The methods
based on the Boltzmann equation, such as the LBE method,
are more general than the ones based on the NS equations
because kinetic methods may be applied to extended hydro-
dynamics for which continuum theory is invalid. In addition
to theoretical generality, kinetic methods may have compu-
tational and numerical advantages because the Boltzmann
equation is a first-order linear partial different equation
sPDEd as opposed to the NS equation, a second order non-
linear PDE. It has been argued that discretization of first-
order linear PDEs has the following advantagesf8g. First,
first-order linear PDEs require only the smallest possible
stencil for accurate discretization, may be easier to achieve
convergence, and yield the highest potential discretization
accuracy on nonsmooth, adaptively refined grids. Second,
stiff terms in first-order PDEs are local in nature thus can be
handled by local solution techniques, as opposed to global
ones. And third, systems of first-order PDEs are better suited
for functional decomposition than the traditional higher-
order nonlinear PDEsf8g. Consequently, LBM has found ap-
plications in many areas of flow physicsscf. reviewsf9–12g
and references thereind.

In this paper, we focus on the application of LBE to tur-
bulence. As a first step to evaluate the capability of LBE in
turbulence, we conduct direct numerical simulationssDNSd
of decaying homogeneous isotropic turbulencesDHITd in
both inertial and rotating frames of reference. DHIT is an
important benchmark problem in the field of DNS of turbu-

lence. The first attempt at DNS of NS equation in fact in-
volved DHIT f13g. Recent investigations include studies on
decay exponents and low wave-number spectra using NS-
DNS f14–16g. Some preliminary three-dimensionals3Dd
DHIT studies using LBE have also been performedf17–19g
but they stop well short of quantitative comparisons with
classical results. The objective of this work is to compute
DHIT with LBE and perform detailed comparisons with es-
tablished results on the following important issues:sid energy
decay exponent,sii d low wave-number scaling of the spectra,
and siii d effect of rotation on energy decay.

The energy spectrumÊsk ,td in DHIT evolves as

]tÊsk,td = − T̂sk,td − 2nk2Êsk,td, s1d

where k is the wave number andn is the viscosity, and

T̂sk ,td represents the nonlinear energy transfer between
modesfcf. Eq.s6.162d in Ref. f20gg. The kinetic energyk and
dissipatione of turbulence are given, respectively, by

k =E Êskddk and e = 2nE k2Êskddk.

It has been long observed that, after a short initial transient
period of time, the kinetic energyk and dissipatione exhibit
power-law decay,

kstd/k0 , st/t0d−n, estd/e0 , st/t0d−sn+1d, s2d

wherek ande have the valuesk0 ande0, respectively, at the
reference timet0=nk0/e0. Isotropic turbulence is character-
ized by the Taylor-microscale Reynolds number,

Rel =
urmsl

n
=Î 20

3ne
k, s3d

whereurms=Î2k/3 is the root mean squaresrmsd of the ve-
locity field u and l=Î15nurms

2 /e is the transverse Taylor-
microscale length.

Equations1d admits a continuous class of invariant solu-

tions in the limit of Re→`. At the large Re,Êsk ,td at the

low wave number behaves as limk→0 Êskd,ks, wheres is a
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time-independent constantse.g. Ref.f21gd. For inviscid flu-
ids, if Loitsyansky’s integralf22g is an invariant, thens=4
andn=10/7 f23g; if Birkhoff’s integral f24g is an invariant,
then s=2 andn=6/5 f25g. It has been recently shown that
constant integral length scalel or the Reynolds number Re
correspond tos=` andn=2 or s=1 andn=1, respectively
f26g. Furthermore, the conservations of energy, angular mo-
mentum, and helicity lead tos=2, 7, and 1, in the limit of
Re→`, respectively. The energy conservation of inviscid
fluids uniquely determines the invariant solution of Eq.s1d,
i.e., s=2, in accordance with Birkhoff’s invariantf24g. De-
spite the apparent simplicity of the DHIT problem, the rel-
evant flow invariant, asymptotic decay exponent, and the
low-k scaling are strong functions of the initial spectrum and
Reynolds number. There is still no clear consensus on
whether the angular momentum or energy is the correct in-
variant. It is also not clear what the conditions are under
which the invariance of either quantity can be observed. As a
result, several different outcomes have been reported in the
literaturef14,15,27,28g.

The lattice Boltzmann equation with single-relaxation-
time approximation due to Bhatnagar, Gross, and Krook
sBGKd f29g for the collision operator isf2,3g

fasx + eadt,t + dtd = fasx,td −
1

t
ffa − fa

seqdg + Fa, s4d

wherefa is the density distribution function with the discrete
velocity ea, fa

seqd is the equilibrium distribution function, and
t is the relaxation time determining the viscosityn of the
modeled fluid. We use the 3D 19-velocity modelsD3Q19d in
our simulations because of its robust numerical characteris-
tics f30g. The equilibria for incompressible flowf31g are

fa
seqd = waHdr + r0F3ea ·u

c2 +
9sea ·ud2

2c4 −
3u2

2c2GJ ,

wheredr is the density fluctuation, andr0 is the mean den-
sity in the system which is usually set to 1, andc=dx/dt=1
in lattice units. The sound speed of the model iscs=c/Î3.
The total density isr=r0+dr. The discrete particle velocities
ea are

ea = 5s0,0d, a = 0

s±1,0,0d,s0, ± 1,0d,s0,0, ± 1d, a = 1–6

s±1, ± 1,0d,s±1,0, ± 1d,s±1, ± 1,0d, a = 7–18,
6

and the weighting coefficients are:w0=1/3, w1–6=1/18,
w7–18=1/36. The mass and momentum conservations are en-
forced:

dr = o
a

fa = o
a

fa
seqd,

r0u = o
a

eafa = o
a

eafa
seqd.

For isothermal fluids, the forcing termFa is f32g

Fa = − 3war0
ea ·a

c2 dt, s5d

wherea is the acceleration due to external force. Here, we
consider the Coriolis force, i.e.,a=−2V3u, whereV is the
angular velocity of the frame of reference.

The hydrodynamic equations derived from Eq.s4d
through the Chapman-Enskog analysis are

]tr + = · ru = 0, s6ad

]tu + u · = u = − = p + n¹2u + a, s6bd

wherep=cs
2r /r0 and the viscosityn=cs

2st−1/2d.
The strain tensorS can be obtained directly from the non-

equilibrium part of the distribution functions

S = −
1

2r0cs
2t

o
a

eaeaffa − fa
seqdg, s7d

ande=2nkS :Sl, wherekl denotes volume averaging.
The initial incompressible homogeneous isotropic veloc-

ity field u0 s= ·u0=0d is generated ink space with the fol-
lowing energy spectrum with random phase:

Êsk,0d =H0.038kme−0.14k2
, k P fkmin,kmaxg,

0, k ¹ fkmin,kmaxg.
J s8d

We use different values ofm in Eq. s8d to test the effect due
to the initial spectrum. We usem=4 in what follows unless
otherwise stated.

A successful LBE turbulence simulation hinges upon pre-
cise stipulation of initial conditions. For Navier-Stokes based
turbulence simulations, one only needs to specify an initial
velocity field. For decaying isotropic turbulence simulations,
a random, isotropic, and divergence-free velocity fieldû0 of

a required spectrumÊsk ,0d in spectral spacek is generated,
following the, now standard, procedure described in Refs.
f33,34g. The initial pressure is then obtained by solving the
Poisson equation. However, the initialization in the LBE
simulations has to be done differently because, first of all,
unlike incompressible Navier-Stokes simulations, the LBE
method is inherently compressible. Moreover, all the distri-
bution functionshfaj, not just their conserved momentsr sor
pd and ru, must be initialized in a self-consistent manner.
This can be best understood in terms of the generalized or
multiple-relaxation-timesMRTd LBE f4–6g. Given an LBE
model with Q discrete velocities inD dimensions, theQ
distribution functionshfaj are equivalent toQ moments
hmaj. The velocity and pressure fields only specifysD+1d
conserved moments ofhfaj, and usuallysD+1d!Q. To ob-
tain accurate results for HIT simulations by using LBE, it is
imperative to properly initialize all of thehfaj, or equiva-
lently the momentshmaj. Clearly it is difficult, if at all pos-
sible, to accurately and consistently estimate the noncon-
served moments, which are related to the derivatives of the
conserved momentsr andu, for a givenu0. Thus an effec-
tive initialization procedure is neededf35g.

We now describe the iterative procedure proposed in Ref.
f35g within the context of the lattice BGKsLBGKd equation.
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First, we generate a random, isotropic, and divergence-free

velocity fieldu0 of the required spectrumÊsk ,0d in the spec-
tral spacek using the procedure outlined in Ref.f33,34g. The
initial velocity is then transferred back to the real spacex.
Then the LBGK equations4d without external forceFa is
used iteratively to compute the distribution functionshfaj
sanddrd with the velocity fieldu fixed at the initial velocity
field u0, that is, in the LBGK collision process, the equilibria
are given by

fa
seqd = fa

seqdsdr,u0d,

wheredr is updated at each time step while the velocity field
is fixed at the given initial fieldu0. This iteration with a fixed
initial velocity field u0 leads to the values ofhfaj consistent
with u0. It can be shown that the pressurep so obtained is
indeed the correct solution of the Poisson equationf36g.

We observe that, without proper initialization ofhfaj, the
initial equilibration process can generate strong acoustic
spressured waves through the system which can persist for
long time. Two severe consequences may result from the
unphysical initial acoustic disturbances. First, the acoustic
disturbances may lead to numerical instability and this is
particularly severe in the LBGK models, because the LBGK
models do not have an adequate amount of the bulk viscosity
to dissipate the acoustic disturbances. The second undesir-
able consequence of inconsistent initialization is that initial
acoustic disturbances can significantly contaminate the solu-
tion at later times. For instance, the total energy can be a few
percent less than its correct value if the initialization is in-
correct. The proposed initialization proceduref35g signifi-
cantly reduces the magnitude of initial acoustic disturbances,
and it has also been successfully applied to LBE-LES simu-
lations f37g.

We first simulate DHIT in the inertial frame. We use two
system sizes: 643 and 1283. The initial energy spectrum is
nonzero in the rangefkmin,kmaxg=f4,8g andf1,8g, according
to Eq. s8d, for 643 and 1283, respectively; andurms=0.023
and n=1/600 st=0.505d, resulting in Rel<53 for 643 and
270 for 1283.

Figure 1 shows the evolutions of the kinetic energyk/k0
and the dissipatione /e0 with the normalized timet8= te0/k0.
In the absence of production, kinetic energy decays mono-
tonically with time. However, as shown in Fig. 1, at early
times dissipation actually increases. This increase is consis-
tent with known turbulence physicssexplained further be-
lowd and similar increase is also seen in NS-DNS results.
Following this period of increased dissipation, the spectrum
starts decaying at all wave numbers. The decay exponentn
of the kinetic energyk in these low Rel simulations varies
with time. Furthermore, Rel itself is a function of time as the
turbulence decays. In Fig. 2, the variation ofn vs Rel in
various simulations are shown. The computed values ofn
and the dependence on Rel are very similar to that observed
in NS-DNS worksse.g. Ref.f14gd. Table I compiles the val-
ues for the decay exponentn of kinetic energy obtained in
recent experimental workf27,28g, NS-DNS dataf14,15g, and
the present LBE-DNS results. The LBE-DNS values ofn
computed here are well within the range obtained else where,
as shown in Table I.

The compensated energy spectra,Êsk ,t8d /k4, of the 1283

simulation are shown in Fig. 3. Initially, the spectrum with
m=4 in Eq. s8d sdashed lined is narrow and soon the energy
spreads to higher wave numbersssmaller scalesd due to the
nonlinear cascade process. This phenomenon leads to the
increase of the dissipation rate in physical space, as shown in
Fig. 1. This fact, in itself, is quite significant since advection

FIG. 1. Time evolution of the normalized kinetic energyk/k0

ssolid linesd and normalized dissipation ratee /e0 sdashed linesd for
643 sthin linesd and 1283 sthick linesd cube.

FIG. 2. The decay exponentn depending on initial conditions
and Rel. For the 1283 cube, L: urms=0.0064, n=0.01, and
fkmin,kmaxg=f1,8g; h: urms=0.021, n=1/600, and fkmin,kmaxg
=f8,16g; s: urms=0.022,n=1/600, andfkmin,kmaxg=f1,8g. For the
643 cubes3d: urms=0.022,n=1/600, andfkmin,kmaxg=f4,8g.

TABLE I. Recent results for the exponentn. The LBE-DNS
results correspond to Fig. 2 in the present work.

lim
k→0

Êsk ,0d Rel exponentn Ref.

Êskd,k2 0–30 1.1–1.52 NS-DNSf14g

Êskd,k2 10–50 1.0–3.0 NS-DNSf15g

28.37–43.85 1.285–1.309 expt.f27g
4.4–5.4 1.3–1.8 expt.f28g

Êskd,k4 2.3–22.5 1.38–1.85 LBE-DNS
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sthe source of nonlinearityd is handled very differently in

LBE. At this stage, the spectrum scales asÊsk ,t8d,k4 at
small k. This dependence of low wave-number scalingsk4d
on initial spectrumsm=4d is in agreement with the other
resultsf14,15g. Subsequently, the spectrum starts to decay,
more rapidly at the largek and slowly at the smallk. Inves-
tigations of low wave-number scaling for other initial spectra
will be performed elsewheref37g.

We also simulate DHIT in a rotating frame. Without loss
of generality, we assume that the frame of reference rotates
about thez axis, i.e., the angular velocity of the rotating
frame of reference isV=s0,0,Vd. The Rossby number is
defined as Ro=kpurms/V, wherekp characterizes the energy
containing wave number att=0. Here, we usekp=skmax

−kmind /2.
The effects of rotation are both scale dependent and an-

isotropic and they are enhanced by increasing the rotation
rateV. In general, it has long been knownf38g that rotation
slows down the cascade and delays the approach to equi-
partition. These features are captured in Fig. 4 which shows
the evolution of kinetic energy at various Rossby numbers
in an 1283 simulation. The initial energy spectrum is nonzero
in the range of 1økø8. Time is normalized byk0/e0 of
the inertial case. As expected, the energy decay slows

down with decreasing Rossby numbersor increasing rate of
rotationd. Closer examination of the spectra shows the ten-
dency to maintain more energy at the small wave numbers
slarge scalesd when the system rotates. The faster the system
rotatesssmaller Rossby numberd, the more prominent is this
tendency.

In this paper, we simulate the classical DHIT problem
with LBM and reproduce well known power-law decay of
the kinetic energy. The decay exponents obtained in the LBE
simulations are in good agreement with experimental mea-
surements and NS-DNS results. Correct low wave-number
spectral scaling is also obtained. The effect of rotation on
turbulence is to suppress the spectral cascade and thus slow
down the decay.

We observe that, even though the LBE method is only
second-order accurate in space and first-order in time
f39–42g, it compares very well with the pseudospectral
method down to the scales of several grid spacings, for a
reasonably long timef19g. This work further establishes
the LBE method as a highly reliable DNS tool to simulate
turbulence.
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